
CGS 3763: Operating System Concepts (Scheduling) Page 1 © Mark Llewellyn

CGS 3763: Operating System Concepts
Spring 2006

Uniprocessor Scheduling – Part 1

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cgs3763/spr2006

CGS 3763: Operating System Concepts (Scheduling) Page 2 © Mark Llewellyn

Uniprocessor Scheduling

• In a multiprogramming system, multiple processes
exist concurrently in main memory. Each process
alternates between using the processor and waiting
for some event to occur, such as the completion of
I/O.

• The key to multiprogramming is scheduling.
• The goals of scheduling are:
1. Assign processes to be executed by the processor(s)
2. Improve response time
3. Improve throughput
4. Increase processor efficiency

CGS 3763: Operating System Concepts (Scheduling) Page 3 © Mark Llewellyn

Types of Scheduling
There are typically four different types of scheduling involved.

• Long-term scheduling: The decision to add to the pool of
processes to be executed.

• Medium-term scheduling: The decision to add to the number
of processes that are partially or fully in main memory.

• Short-term scheduling: The decision as to which available
process will be executed by the processor.

• I/O scheduling: The decision as to which process’s pending
I/O request will be handled by an available I/O device. (We’ll
defer this type of scheduling until we discuss I/O management
later in the course.)

CGS 3763: Operating System Concepts (Scheduling) Page 4 © Mark Llewellyn

Scheduling and Process State Transitions

CGS 3763: Operating System Concepts (Scheduling) Page 5 © Mark Llewellyn

Levels of Scheduling

This diagram reorganizes the
state transition diagram to
suggest the nesting of
scheduling functions.

Scheduling affects the
performance of the system
because it determines which
processes will wait and which
will progress. This is
illustrated by the next diagram.

CGS 3763: Operating System Concepts (Scheduling) Page 6 © Mark Llewellyn

Queuing Diagram For Scheduling

CGS 3763: Operating System Concepts (Scheduling) Page 7 © Mark Llewellyn

Long-Term Scheduling
• Determines which programs are admitted to the system for

processing

• Long term scheduling controls the degree of
multiprogramming

• The decision as to when to create a new process is general
driven by the desired degree of multiprogramming. The more
processes that are created, the smaller is the percentage of time
each process can be executed (i.e., more processes are
competing for the same amount of processor time).

• Thus, the long term scheduler may limit the degree of
multiprogramming to provide satisfactory service to the
current set of processes.

CGS 3763: Operating System Concepts (Scheduling) Page 8 © Mark Llewellyn

Long-Term Scheduling (cont.)

• The decision as to which job to admit next can be based on a
simple first-come-first-served basis, or it can be based on a much
more elaborate protocol to assist in the management of system
performance.

• Many different criteria can be used including:
– Priority
– Expected execution time
– I/O requirements
– Overall system balance (CPU bound versus I/O bound processes)

• Note: for time sharing systems, process creation will occur
when a user attempts to connect to the system. Time sharing
users are not queued up and kept waiting, rather all comers are
accepted until the system reaches some saturation point.

CGS 3763: Operating System Concepts (Scheduling) Page 9 © Mark Llewellyn

Medium-Term Scheduling

• Part of the swapping function.

• Typically the swapping-in decision is based on the
need to manage the degree of multiprogramming.

• On a system that does not use virtual memory,
memory management also becomes an issue that must
be addressed by the medium-term scheduler. This
means that the swapping-in decision must consider
the memory requirements of the swapped-out
process.

CGS 3763: Operating System Concepts (Scheduling) Page 10 © Mark Llewellyn

Short-Term Scheduling

• In terms of frequency of execution, the long-term
scheduler executes relatively infrequently and makes
the coarse-grained decision of whether or not to take
on a new process and which one to take.

• The medium-term scheduler is executed somewhat
more frequently to make a swapping decision.

• The short-term scheduler is also known as the
dispatcher, executes the most frequently and makes
the fine-grained decision of which process to execute
next.

CGS 3763: Operating System Concepts (Scheduling) Page 11 © Mark Llewellyn

Short-Term Scheduling (cont.)

• The short-term scheduler is invoked when an event
occurs that may lead to the blocking of the current
process or that may provide and opportunity to
preempt a currently running process in favor of
another.

• Example of such events include:
– Clock interrupts

– I/O interrupts

– Operating system calls

– Signals (semaphores)

CGS 3763: Operating System Concepts (Scheduling) Page 12 © Mark Llewellyn

Short-Term Scheduling (cont.)

• The main objective of short-term scheduling is to
allocate processor time in such a way as to optimize
one or more aspects of the systems behavior.

• The commonly used criteria can be categorized into
two broad dimensions.

1. We can make the distinction between user-oriented
and system-oriented criteria.

2. We can also make the distinction between criteria
which are performance related and those that are
not directly performance related.

CGS 3763: Operating System Concepts (Scheduling) Page 13 © Mark Llewellyn

Short-Tem Scheduling Criteria

• User-oriented (perceived by the user or process)
– Response Time in an interactive system

• Elapsed time between the submission of a request until there is
output.

• For example, a threshold of 2 seconds may be defined such that the
goal of the scheduling is to maximize the number of users who
experience an average response time of 2 seconds or less.

• System-oriented
– Effective and efficient utilization of the processor

• An example is throughput, which is the rate at which processes are
completed. Focus is clearly on system performance rather than
service provided to the user, although the users may also benefit
from increased throughput.

CGS 3763: Operating System Concepts (Scheduling) Page 14 © Mark Llewellyn

Short-Term Scheduling Criteria

• Performance-related
– Quantitative
– Readily measurable and analyzable.
– Examples: response time and throughput.

• Non-performance related
– Qualitative
– Not readily measurable.
– Example is predictability. Service provided to users

exhibits the same characteristics over time independent of
other work being performed by the system.

CGS 3763: Operating System Concepts (Scheduling) Page 15 © Mark Llewellyn

Summary of Scheduling Criteria

CGS 3763: Operating System Concepts (Scheduling) Page 16 © Mark Llewellyn

Summary of Scheduling Criteria (cont.)

CGS 3763: Operating System Concepts (Scheduling) Page 17 © Mark Llewellyn

The Use Of Priorities
• In many systems, each process is assigned a priority

and the scheduler will always choose a process of
higher priority over one of lower priority

• Have multiple ready queues (RQ #) to represent each
level of priority

• One problem with a pure priority scheduling scheme
is that lower-priority processes may suffer starvation.
This happens when there is always a steady supply of
higher-priority processes.
– To prevent this it is possible to allow a process to change

its priority based on its age or execution history.

CGS 3763: Operating System Concepts (Scheduling) Page 18 © Mark Llewellyn

Priority Queuing

CGS 3763: Operating System Concepts (Scheduling) Page 19 © Mark Llewellyn

Alternative Scheduling Protocols
• The table on the following page illustrates some of the

possible scheduling protocols.

• The selection function determines which process, among ready
processes, is selected next for execution. This function may be
based on priority, resource requirements, or the execution
characteristics of the process. In the latter case, three quantities
are significant:
– w = time spent it system so far, waiting and executing
– e = time spent in execution so far
– s = total service time required by the process, including e:

generally this quantity is estimated.
• For example, the selection function max[w] indicates a first-

come-first-served protocol.

CGS 3763: Operating System Concepts (Scheduling) Page 20 © Mark Llewellyn

Characteristics of Various Scheduling Protocols

See notes

FCFS = first come first served SPN = shortest process next

SRT = shortest remaining time

HRRN = highest response ration next

CGS 3763: Operating System Concepts (Scheduling) Page 21 © Mark Llewellyn

Decision Mode
• The decision mode specifies the instants in time at which the

selection function is applied. There are two general
categories:

• Nonpreemptive
– Once a process is in the running state, it will continue until (a) it

terminates or (b) blocks itself to wait for I/O or request some
operating system service.

• Preemptive
– Currently running process may be interrupted and moved to the

Ready state by the operating system.
– The decision to preempt may be performed when a new process

arrives; when an interrupt occurs that places a blocked process in
the Ready state, or periodically, based on a clock interrupt.

CGS 3763: Operating System Concepts (Scheduling) Page 22 © Mark Llewellyn

Decision Mode (cont.)

• Preemptive protocols incur greater overhead than
nonpreemptive ones but will in general provide better
service to the total population of processes, because they
prevent any one process from monopolizing the processor
for very long.

• In addition, the cost of preemption may be kept relatively
low by using efficient process-switching mechanisms
(with hardware support) and by providing a large main
memory to key a high percentage of programs in main
memory.

CGS 3763: Operating System Concepts (Scheduling) Page 23 © Mark Llewellyn

Process Scheduling Example

As we examine the various scheduling protocols we’ll use this set of
processes as a running example.

We can think of these as batch jobs with the service time representing the
total execution time required.

Alternatively, we can think of these as ongoing processes that require
alternate use of the processor and I/O in repetitive fashion. In this case, the
service time represents the processor time required in one cycle.

In either case, in terms of a queuing model, this quantity corresponds to the
service time.

CGS 3763: Operating System Concepts (Scheduling) Page 24 © Mark Llewellyn

First-Come-First-Served (FCFS)
• The FCFS scheduling policy is the simplest scheduling algorithm

we will examine.

• The FCFS protocol specifies that the first process to request the
CPU is allocated to the CPU first.

• The FCFS protocol maintains the ready list as a straight queue
(i.e., not a priority queue but a FIFO structure).

• The FCFS protocol is nonpreemptive. Once a process is
allocated to the CPU it keeps the CPU until it terminates or
requests I/O (interrupt).

• While the FCFS protocol is easy to implement and oversee – it
does not lead to a minimization of the average waiting time. The
following example illustrates how the average waiting time is
computed.

CGS 3763: Operating System Concepts (Scheduling) Page 25 © Mark Llewellyn

First-Come-First-Served (FCFS)

• The waiting time (w) for process A = 0, for B = 1, C = 5, D= 7 and E = 10

• The average waiting time is then: (0 + 1 + 5 + 7 + 10)/ 5 = 23/5 = 4.6

• The turnaround time (Tr) for process A = 3, B = 7, C = 9, D = 12, and E = 12

• The average turnaround time is then (3 + 7 + 9 + 12 + 12)/5 = 43/5 = 8.6

• Tr/Ts: A = 3/3 = 1, B = 7/6 = 1.17. C = 9/4 = 2.25, D = 12/5 = 2.4, E = 12/2 = 6

• The average for Tr/Ts: (1 + 1.17 + 2.25 + 2.4 + 6)/5 = 2.56

CGS 3763: Operating System Concepts (Scheduling) Page 26 © Mark Llewellyn

First-Come-First-Served (FCFS)
• The average waiting time under a FCFS protocol is generally not

minimal. Further, if the variance in CPU burst time is large, then
the average waiting time will vary drastically depending upon the
order in which the processes arrive for service in the ready queue.
The following example illustrates the variance in the average
waiting time of this protocol.

• Suppose the processes arrive in the order B, D, C, A, E. This
causes their waiting times to become: B = 0, D = 4, C = 7, A = 9,
E = 10. The average waiting time is then: (0 + 4 + 7 + 9 + 10)/5 =
30/5 = 6. Similarly the turnaround times become: B = 6, D = 11,
A= 15, C = 18, and E = 20, with the average turnaround time
being (6 + 11 + 14 + 18 + 20)/5 = 65/9 = 13.8.

CGS 3763: Operating System Concepts (Scheduling) Page 27 © Mark Llewellyn

First-Come-First-Served (FCFS)
• The FCFS protocol performs poorly in terms of maximizing the utilization

of the CPU and the various I/O devices.
– Consider the following scenario of one CPU bound process and many I/O

bound processes currently in the system. Once the CPU bound process is
allocated to the CPU it will keep it. During this time all of the I/O bound jobs
will finish their I/O and renter the ready queue to await their next turn on the
CPU. While the I/O bound processes wait in the ready queue all of the I/O
devices are idle. Eventually, the CPU bound process will finish its current
CPU burst and requests I/O. Now all of the I/O bound processes in the ready
queue will execute their CPU burst very quickly and move back into their I/O
queues. At this point the CPU remains idle (as all processes are currently
awaiting I/O completions. At some point the CPU bound process will reenter
the CPU and the process will repeat as the I/O bound jobs will finish and arrive
back in the ready queue. This is a convoy effect as all the I/O bound and short
CPU processes wait for one CPU bound job to complete.

– The overall effect is to lower both CPU utilization and I/O device utilization
while increasing the average waiting time in the system for all processes
(except perhaps for the one CPU bound process).

CGS 3763: Operating System Concepts (Scheduling) Page 28 © Mark Llewellyn

First-Come-First-Served (FCFS)
• A short process may have to wait a very long time before it

can execute.

• Favors CPU-bound processes

– I/O processes have to wait until CPU-bound process completes

• The FCFS protocol is particularly unsuited to time-shared
systems where the average response time begins to skyrocket
if a single process is allowed to control the CPU for an
extended period.

• In general, FCFS performs much better for long processes than
short processes.

CGS 3763: Operating System Concepts (Scheduling) Page 29 © Mark Llewellyn

First-Come-First-Served (FCFS)
• FCFS is not an attractive alternative on its own for a

uniprocessor system.

• It is sometimes combined with a priority scheme to provide an
effective scheduler. In this case, the scheduler maintains a
number of queues, one for each priority level, and dispatch
within each queue on a FCFS basis.

• This is a common technique employed with feedback systems.

CGS 3763: Operating System Concepts (Scheduling) Page 30 © Mark Llewellyn

Round-Robin

• The round-robin protocol is a straightforward way to
reduce the penalty that short jobs suffer under FCFS.

• Round-robin uses preemption based on a clock. A
clock interrupt signal is generated at periodic
intervals. When the interrupt occurs, the currently
running process is placed in the ready queue, and the
next ready job is selected on a FCFS basis.

• This technique is also known as time-slicing, because
each process is given a slice of time before being
preempted.

CGS 3763: Operating System Concepts (Scheduling) Page 31 © Mark Llewellyn

Round-Robin
• With round-robin, the principal design issue is the length of

the time quantum, or slice, to be used.

• If the quantum is very short, then short processes will move
through the system relatively quickly.

• On the other hand, there is processing overhead involved in
handling the clock interrupt and performing the scheduling
and dispatching functions.

• This implies that very short time quantum should be avoided.

• One useful guideline is that the time quantum should be
slightly greater than the time required for a typical interaction
or process function. If it is less, then most processes will
require at least two quanta. (See next slide.)

CGS 3763: Operating System Concepts (Scheduling) Page 32 © Mark Llewellyn

Effect of Size on Preemption
Time Quantum

Figure (a) shows the effect
when the time quantum is
larger than the typical
interaction time. Typical
processes complete in one
time quantum.

Figure (b) illustrates the case
when the time quantum is
smaller than the typical
interaction time. Typical
processes require at least two
time quantum.

CGS 3763: Operating System Concepts (Scheduling) Page 33 © Mark Llewellyn

Round-Robin

• Waiting time of process A = 1, B = 10, C = 9, D = 9, and E = 5
• Average waiting time: (1 + 10 + 9 + 9 + 5)/5 = 34/5 = 6.8
• Turnaround time of process A = 4, B = 16, C = 13, D = 14, and E = 7
• Average turnaround time: (4 + 16 + 13 + 14 + 7)/5 = 54/5 = 10.8

Process A gets two
initial quanta since
process B does not
arrive until time 2.

Process D gets
two quanta at
end as it is the
only process

left.

CGS 3763: Operating System Concepts (Scheduling) Page 34 © Mark Llewellyn

Round-Robin
• Round-robin is particularly effective in a general-purpose time-

sharing system or transaction processing system.

• One drawback to round-robin is its relative treatment of CPU-
bound and I/O-bound processes. Generally, an I/O bound process
has a shorter processor burst (the amount of time spent executing
between I/O operations) than a CPU-bound process.

• With a mix of CPU and I/O bound processes the following will
happen: An I/O bound process uses the CPU for a short period of
time and is then blocked for I/O; it waits for the I/O to complete
then joins the ready queue. On the other hand, a CPU bound
process generally uses its entire quantum while executing and
immediately returns to the ready queue. Thus, CPU bound
processes tend to receive an unfair portion of processor time, which
results in poor performance for I/O bound processes., inefficient
use of I/O devices, and an increase in the variance of response time.

CGS 3763: Operating System Concepts (Scheduling) Page 35 © Mark Llewellyn

Round-Robin
• One possible solution to this problem that has been developed is

referred to as a virtual round-robin (VRR) which avoids this
unfairness to I/O bound processes.

• In VRR, new processes arrive and join the ready queue, which is
managed on a FCFS basis. When a running process times out, it is
returned to the ready queue. When a process is blocked for I/O, it
joins an I/O queue. (So far, this method is no different from what
we’ve seen previously).

• The new feature is an FCFS auxiliary queue to which processes are
moved after being released from an I/O block.

• When a dispatching decision is to be made, processes in the
auxiliary queue are given preference over those in the main ready
queue. When a process is dispatched from the auxiliary queue, it
runs no longer than a time equal to the basic time quantum minus
the total time spent running since it was last selected from the main
ready queue. This method is illustrated on the next slide.

CGS 3763: Operating System Concepts (Scheduling) Page 36 © Mark Llewellyn

Set-up For Virtual Round-Robin

